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ABSTRACT

A tight binding model which includes s, p, d, and s*
orbitals is used to examine the electronic structures of an
ensemble of dome-shaped Ing gGag 4As quantum dots.
Given ensembles of identically sized quantum dots, vari-
ations in composition and configuration yield a linewidth
broadening of less than 0.35 meV, much smaller than the
total broadening determined from photoluminescence ex-
periments. It is also found that the computed disorder-
induced broadening is very sensitive to the applied bound-
ary conditions, so that care must be taken to ensure
proper convergence of the numerical results. Examina-
tion of local eigenenergies as functions of position shows
similar convergence problems and indicates that an in-
accurate resolution of the equilibrium atomic positions
due to truncation of the simulation domain may be the
source of the slow ground state convergence.
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1 INTRODUCTION

Envelope function-based models such as k.p are of-
ten used to characterize the electronic structures of quan-
tum dots. Such jellium-like models are often very useful
and are not too computationally demanding. However,
they suffer as the minimum feature size approaches the
length scale of several nanometers or less [1], [2] and also
cannot capture effects such as alloy disorder or inter-
face interdiffusion that arise from the discreteness of the
underlying medium. The two primary alternative ap-
proaches to model solids on finer length scales are tight-
binding and pseudopotential methods. We have pur-
sued the former approach for our ability to leverage pre-
vious Nanoelectronic Modeling (NEMO) developments
[3]-[5], and are currently developing an atomistic nano-
electronic simulation tool (NEMO-3D) to model quan-
tum dot structures on high performance commodity clus-
ters (Beowulfs). Modeling of realistic structures en-
tails simulation domains encompassing many millions
of atoms. Such large-scale domains result in very large
eigenproblems (dimension > 108) which necessitate the
usage of massively parallel computers. Details of the nu-
merical implementation including performance bench-

marks have been described in greater detail elsewhere

[6].

model (sp®d®s*) with a 20 orbital basis, consisting of s,
p, and d orbitals, associated with each atomic lattice
site. Since the basis set that is used is not complete
in a mathematical sense, the parameters that enter the
model do not correspond precisely to actual orbital over-
laps. Thus, an analytical approach to determine these
parameters is insufficient. Instead, a genetic algorithm
package is used to determine a set of orbital couplings
that reproduces a large number of physical observables
of the bulk binary system, including bandgaps and ef-
fective masses at various symmetry points in the Bril-
louin zone. These orbital couplings must also depend on
bond lengths to account for the shifts in atomic positions
in strained systems. A power-law scaling is assumed
(whose exponent is also determined with the genetic al-
gorithm) to account for strain-induced shifts.

Because the basis set used consists of orthogonal-
ized Lowdin orbitals and not the true atomic orbitals,
the diagonal (self-coupling) elements are also allowed
to vary with the displacement of the nearest neighbor
atoms [7]. Since, an accurate calculation of the elec-
tronic structure within the tight-binding model also ne-
cessitates an accurate representation of the positions of
each atom, NEMO-3D uses a valence force field (VFF)
model in which the total strain energy, expressed as a
local (nearest-neighbor) functional of atomic positions,
is minimized [8], [9].

In this work, we examine the dependence of the ground
state eigenenergies as a function of various buffer sizes.
We shall demonstrate that the variations of eigenener-
gies can depend strongly on the size of simulation do-
main, and that proper care must therefore be taken to
ensure that a solution has “converged”.

Our simulation employs a nearest-neighbor tight-binding

2 SIMULATION

2.1 Ground state electron energy

The canonical model used for all the simulations in
this work is a dome shape Ing¢Gag.4As quantum dot
(QD) of diameter 30 nm and height 5.4 nm embedded
in a finite GaAs box. The QD itself contains roughly
2 x 10° atoms. A list of the values of the tight-binding
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Figure 1: Ground state electron eigenenergies ob-
tained for free, fixed, and periodic boundary cond-
tions. For the case of unconstrained (free) boundary
conditions, convergence of eigenenergies is also illus-
trated for the case of free boundary conditions where
only the vertical buffer size is varied and the lateral
buffer size is fixed at 4 nm (dashed line).

parameters necessary for the simulation is given in Ta-
ble III of reference [6]. Although all the QDs are of
identical size, the placement of In and Ga cations varies
among simulations. We make the ansatz that no correla-
tion in species type exists between any two atomic sites.
Thus, sites on the cation sublattice are filled with a 60%
(40%) probability of being In (Ga). Note that such an
algorithm does not, in general, ensure that exactly 60%
of the cations in the QD are In atoms. The resulting
broadening of the energy spectrum, then, includes not
only the configurational disorder, arising from the distri-
bution of different cations throughout the alloy subject
to the constraint of a fixed overall concentration, but
also a concentrational disorder that reflects the fact that
a growth process never produces nanostructures with
identical concentrations each time. It has been demon-
strated that for bulk (periodic) systems, the concentra-
tional disorder dominates by an order of magnitude [10].
In the following simulations, we consider three different
boundary conditions, fixed, free, and periodic, that di-
rectly impact the strain calculation and therefore either
indirectly or directly affect the electronic computation.
In the fixed case, the surface atoms are constrained to
the positions they would have if the simulation domain
consisted entirely of GaAs. In the free case, the entire
domain is allowed to expand without any external con-
straints. Finally, under periodic boundary conditions,
the total strain energy is minimized with respect to both
position and period. In Fig.(1), we compare the ground
state electron eigenenergy for each case as a function of
buffer size. 1so shown is the convergence of eigenenergies
for the case of free boundary conditions when only the
vertical buffer size is varied and the lateral buffer size

15 1xed at 4 nm. 1he largest simulation €mploys a 10
nm buffer and encompasses approximately six million
atoms. Because of memory constraints the buffer sizes
in Fig.(1) are limited to 16 nm. The intent is to inves-
tigate how well such a truncated system approximates
one in which the QD is embedded in an infinitely large
block of GaAs. In the case of free boundary conditions
no external constraints are imposed, so that the strain
computed for the truncated system is reduced from what
it should be for an infinite buffer. The shift of the con-
duction band edge at I", which depends linearly on the
hydrostatic component, is given by

AE, = 20Tr{e} (1)
where Egooo) < 0 [11]. Thus, one expects a reduction
in compressive strain (an increase in Tr{e¢}) in the QD
to accompany a reduction in electron ground state en-
ergy. The situation for the fixed case, where the lattice
constant on the boundary is constrained to bulk values,
is inverted, since the strain effect in the QD is overes-
timated relative to the case of infinite buffers. Fig.(1)
demonstrates that the two cases converge provided that
the buffer is made sufficiently large. The periodic case
lies in between the other two cases as expected, but
yields eigenergies only only slightly greater than for the
free case for fixed simulation domain size. Thus, we can
expect that the strain computed from the periodic case
closely resembles that of the free case. Finally we note
that extension of the buffer in the lateral direction for
the free case does not significantly alter the computed
eigenenergies. This is likely due to the fact that the QD
is quite “flat”, so that the binding energy is principally
determined by confinement in the Z direction. These re-
sults demonstrate that the simulation domain needs to
extend rather far into the buffer to assure convergence.

2.2 Linewidth broadening

We now consider the issue of linewidth broadening.
That is, given an ensemble of ostensibly identical quan-
tum dots, we explore the fundamental limits of linewidth
broadening that arise solely as a result of variations in
configurations of cations in the quantum dots and ig-
nore any additional contributions such as size variation,
strain-induced spatial perturbations on a QD due to
neighboring QDs, and many-body effects. Our calcu-
lations for the case of fixed boundary conditions did
not yield hole eigenenergies for small buffer sizes, so
we consider only the case of free boundary conditions.
We examine the electron and hole ground state eigenen-
ergy distributions for three different buffer systems, 4nm
8nm, and 12nm. 190 samples points were obtained for
the first two systems and 93 for the larger (and com-
putationally more taxing) 12nm buffer geometry. A his-
togram of the distributions for the first two geometries is
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Figure 2: Electron and hole energy distributions for a
set of QD with 4 nm (top) and 8 nm (bottom) buffers.

Table 1: buffer size dependence of eigenenergies and

broadening
Statistical data (energies are in meV and lengths are in nm)
Lbuff E. Jc E, Ty Eg Ocv
4 1317.0 | 0.78 | 161.8 | 0.27 | 1155.2 1.00
8 1368.0 | 0.36 | 149.8 | 0.12 | 1218.1 0.46
12 1389.4 | 0.27 | 141.7 | 0.14 | 1247.6 0.35

shown in Fig.(2), and Table (1) summarizes the statisti-
cal data for all three configurations. First we note that
the electron (hole) energies are shifted up (down) with
bigger buffers as found earlier. However, the electron
eigenenergy broadening, given by the standard devia-
tion, o, is two to three times larger than that of holes,
0y. This result differs from an earlier finding for bulk
unstrained Al,Ga;_,As with periodic boundary condi-
tions applied in which the electron broadening was found
to be only slightly larger than that of holes [10]. This
discrepancy might possibly be due the fact that both
light and heavy holes are broadened in the bulk un-
strained case, while the confinement of a QD splits the
I's degeneracy. Interestingly, the degree to which the
electron and hole distributions are broadened is strongly
dependent on the buffer size. Indeed, it seems likely that
a significant broadening of the eigenenergy distribution
is an artifact of the truncation of the simulation do-
main, since increasing the simulation size reduces the
broadening. One possible explanation for this reduction
in linewidth is that as eigenstates are pushed up closer
to the bulk GaAs conduction and valence band edges,
perturbations to concentration and strain produce less
significant changes to the eigenvalues.

Finally, note that the sum of electron and hole stan-
dard deviations is still (roughly) equal to the standard
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Figure 3: Electron and hole ground state eigenenergies
as a function of total strain energy of the QD for a lateral
buffer size of 4nm and transverse buffer sizes of 4 nm
(top two figures) and 8 nm (bottom two figures) under
free boundary conditions.

deviation of the energy gap. This result indicates that
the electron and hole eigenenergies are strongly corre-
lated. This is not unexpected since the concentrational
broadening had previously been identified to be the most
dominant effect in bulk unstrained systems [10]. An-
other way to see this correlation is to look at the depen-
dence of the eigenenergies on the total strain energy of
the system, which also depends on the alloy concentra-
tion. In the VFF model used, the total strain energy
is the sum over all atoms of the local strain energy at
each atom, which depends only on the positions of the
neighboring atoms. Fig.(3) shows scatter plots for elec-
tron and hole ground state energies as a function of total
strain for two different lateral buffer widths of 4 and 8
nm. The strain energies (not shown) seem to have a
roughly Gaussian shape with a spread of approximately
25 eV (or about 1 %). Notice that an increase in strain
energy reduces the band gap. The reduction in band
gap is reasonable, since an increase in strain energy is
likely a result of a slightly higher concentration of In
atoms. The trends are the same for both buffer sizes,
except that the strain energy for the system with the
4 nm buffer is reduced, since the overall system size is
smaller. However, the slopes of the curves are much
larger for the smaller buffer, indicating a stronger de-
pendence of eigenergy on strain.

2.3 Local bandstructure

We next examine the effect of the deformation of the
primitive cells under strain on the local electron and hole
band structure within the GaAs buffer. At each cation
(Ga) site, we define a “local” eigenenergy obtained by



computing the band minima at 1 Oorf a bulk solid Con-
structed from the single primitive cell formed by the
cation and its four neighboring As anions. In essence,
these local eigenenergies define a spatially dependent
band edge. It is important to note that the eigenenergy
local to a cation depends only on the relative position of
the surrounding As atoms. Thus, these local eigenvalues
essentially reflect local strain conditions. Fig.(4) shows
local eigenvalues of the buffer material for our canonical
problem with the three boundary conditions discussed
earlier and with buffer sizes of 4nm, 8nm, and 12nm.
Here, larger dot size corresponds to larger buffer size.
In each case, local eigenvalues are computed about each

cation contained within a narrow tube aligned along
a lateral (x) direction that passes close to axes of max-
imal symmetry. The tube extends from the edge of the
enclosing buffer up to the QD, and it was verified that
the behavior of the eigenvalues in buffer at the other
end was symmetric, due to the reflection symmetry of
the system. The finite thickness of the tube accounts for
the spreading of the local eigenvalues as one moves from
the edge of the simulation domain toward the quantum
dot. Note that for none of the boundary conditions is
a buffer of 4 nm is sufficient to characterize the QD,
since the local eigenergies at the boundary of the sim-
ulation domain are not close to the bulk eigenvalue of
1.424 eV. However, convergence toward this bulk value
is evident as the buffer size is increased. = For both
periodic and free boundary conditions, the eigenvalues
are pushed down from their bulk values, whereas for the
fixed boundary condition case, the eigenvalues obtained
are greater than that of bulk GaAs. Since the shift
in the CB edge (at I') arises only from the hydrostatic
component of the strain, as indicated by Eq.(1), tensile
strain should lower E.. This was confirmed in figure 7
of [6] which also shows that E, is reduced under biax-
ial tension. For very small buffers under free boundary
condition, GaAs unit cells on the surface should stretch
out biaxially to match the larger Ing¢Gag 4As lattice
constant. This tension should also be present under pe-
riodic boundary condition, and, is in fact reflected in
the reduced value of E, for both of those cases. For
the case of fixed boundary condition, the boundary is
constrained to positions that it would have if the entire
simulation domain were composed of GaAs. In this case,
the presence of InGaAs in the interior should compress
the GaAs buffer on the outside. This compressive strain
increases the value of E, as seen in Fig.(4).

The convergence of hole eigenenergies, shown in Fig.(5),

demonstrates behavior similar to that seen for electrons,
except that light hole and heavy hole splitting of roughly
10 meV is evident even for the largest buffer size. The
loss of degeneracy arises from the symmetry breaking
due to strain. For the smallest buffer of 4 nm, the split-
ting is found to be as large as 90 meV for the case of

periodiCc boundary conditions. rfurthermore, even ior
the largest buffer size, the local eigenergies “flatten out”
and saturate to an asymptotic value that differs from un-
strained GaAs. This suggests that the inaccurate char-
acterization of the strain may be the principal limitation
on the accuracy of the “global” eigenvalues.

3 conclusion

The convergence of electron and hole ground states
of a dome-shaped InggGag.4As quantum dot has been
explored within an sp®d®s* tight binding model. Tt has
been demonstrated that within this model, one must
include a barrier region many times the size of the em-
bedded quantum dot. The inadequate convergence of
the local bandstructure is a direct reflection of the lack
of convergence of the strain, and may be the principal
cause for the slow convergence of the “global” ground
state eigenenergies.
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Figure 4: Local electron eigenenergies of the GaAs
buffer along a lateral axis of the QD for different
boundary conditions and buffer sizes of 4nm, 8nm,
and 12 nm. Larger dot size corresponds to larger
buffer size.
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Figure 5: Local hole eigenenergies of the GaAs buffer

along a lateral axis of the QD for different boundary

conditions and buffer sizes of 4nm, 8nm, and 12 nm.

Larger dot size corresponds to larger buffer size.



